Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.091
Filtrar
1.
Am J Respir Crit Care Med ; 209(9): 1152-1164, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38353578

RESUMO

Rationale: Chronic sarcoidosis is a complex granulomatous disease with limited treatment options that can progress over time. Understanding the molecular pathways contributing to disease would aid in new therapeutic development. Objectives: To understand whether macrophages from patients with nonresolving chronic sarcoidosis are predisposed to macrophage aggregation and granuloma formation and whether modulation of the underlying molecular pathways influence sarcoidosis granuloma formation. Methods: Macrophages were cultivated in vitro from isolated peripheral blood CD14+ monocytes and evaluated for spontaneous aggregation. Transcriptomics analyses and phenotypic and drug inhibitory experiments were performed on these monocyte-derived macrophages. Human skin biopsies from patients with sarcoidosis and a myeloid Tsc2-specific sarcoidosis mouse model were analyzed for validatory experiments. Measurements and Main Results: Monocyte-derived macrophages from patients with chronic sarcoidosis spontaneously formed extensive granulomas in vitro compared with healthy control participants. Transcriptomic analyses separated healthy and sarcoidosis macrophages and identified an enrichment in lipid metabolic processes. In vitro patient granulomas, sarcoidosis mouse model granulomas, and those directly analyzed from lesional patient skin expressed an aberrant lipid metabolism profile and contained increased neutral lipids. Conversely, a combination of statins and cholesterol-reducing agents reduced granuloma formation both in vitro and in vivo in a sarcoidosis mouse model. Conclusions: Together, our findings show that altered lipid metabolism in sarcoidosis macrophages is associated with its predisposition to granuloma formation and suggest cholesterol-reducing therapies as a treatment option in patients.


Assuntos
Granuloma , Metabolismo dos Lipídeos , Macrófagos , Sarcoidose , Humanos , Animais , Camundongos , Macrófagos/metabolismo , Sarcoidose/metabolismo , Granuloma/metabolismo , Feminino , Masculino , Pessoa de Meia-Idade , Adulto , Modelos Animais de Doenças
2.
Cardiovasc Pathol ; 70: 107624, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38412903

RESUMO

This study aimed to assess the frequency and association between transthyretin-derived (ATTR) amyloidosis and sarcoidosis in a large autopsy cohort including many cases of sudden cardiac death (SCD). We identified 73 sporadic ATTR amyloidosis cases and 11 sarcoidosis cases, among which we found two cases with concomitant ATTR amyloidosis and sarcoidosis (2.4% of all cases; 2.7% within the sporadic ATTR group). The first case involved a 92-year-old man who experienced SCD. In this patient's heart, we observed ATTR deposition and noncaseating epithelioid granulomas consistent with sarcoidosis. Focally, ATTR deposits and granulomas co-localized, with histiocyte phagocytosis of transthyretin-immunoreactive fragments. However, in most lesions, they were distributed independently. The second case was that of an 86-year-old woman who also experienced SCD. In this patient, we detected ATTR deposition in the heart and lung, while noncaseating epithelioid granulomas were only observed in the lung, liver, kidney, and thyroid. Furthermore, no co-localization of the two lesions was observed. Based on these findings, we concluded that the coexistence of ATTR amyloidosis and sarcoidosis was likely coincidental. Nevertheless, despite the rarity of the combination of these two diseases, it should be recognized as a potential cause of SCD, especially among elderly people.


Assuntos
Neuropatias Amiloides Familiares , Granuloma , Sarcoidose , Humanos , Idoso de 80 Anos ou mais , Feminino , Masculino , Granuloma/patologia , Granuloma/metabolismo , Sarcoidose/patologia , Sarcoidose/metabolismo , Sarcoidose/complicações , Neuropatias Amiloides Familiares/patologia , Neuropatias Amiloides Familiares/metabolismo , Neuropatias Amiloides Familiares/complicações , Idoso , Autopsia , Miocárdio/patologia , Miocárdio/metabolismo , Miocárdio/imunologia , Morte Súbita Cardíaca/etiologia , Morte Súbita Cardíaca/patologia , Pessoa de Meia-Idade , Pré-Albumina/análise , Pré-Albumina/metabolismo , Cardiomiopatias/patologia , Cardiomiopatias/metabolismo , Cardiomiopatias/etiologia , Cardiomiopatias/imunologia
3.
Int Immunol ; 36(4): 183-196, 2024 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-38147536

RESUMO

In sarcoidosis, granulomas develop in multiple organs including the liver and lungs. Although mechanistic target of rapamycin complex 1 (mTORC1) activation in macrophages drives granuloma development in sarcoidosis by enhancing macrophage proliferation, little is known about the macrophage subsets that proliferate and mature into granuloma macrophages. Here, we show that aberrantly increased monocytopoiesis gives rise to granulomas in a sarcoidosis model, in which Tsc2, a negative regulator of mTORC1, is conditionally deleted in CSF1R-expressing macrophages (Tsc2csf1rΔ mice). In Tsc2csf1rΔ mice, common myeloid progenitors (CMPs), granulocyte-monocyte progenitors (GMPs), common monocyte progenitors / monocyte progenitors (cMoPs / MPs), inducible monocyte progenitors (iMoPs), and Ly6Cint CX3CR1low CD14- immature monocytes (iMOs), but not monocyte-dendritic cell progenitors (MDPs) and common dendritic cell progenitors (CDPs), accumulated and proliferated in the spleen. Consistent with this, monocytes, neutrophils, and neutrophil-like monocytes increased in the spleens of Tsc2csf1rΔ mice, whereas dendritic cells did not. The adoptive transfer of splenic iMOs into wild-type mice gave rise to granulomas in the liver and lungs. In these target organs, iMOs matured into Ly6Chi classical monocytes/macrophages (cMOs). Giant macrophages (gMAs) also accumulated in the liver and lungs, which were similar to granuloma macrophages in expression of cell surface markers such as MerTK and SLAMF7. Furthermore, the gMA-specific genes were expressed in human macrophages from sarcoidosis skin lesions. These results suggest that mTORC1 drives granuloma development by promoting the proliferation of monocyte/neutrophil progenitors and iMOs predominantly in the spleen, and that proliferating iMOs mature into cMOs and then gMAs to give rise to granuloma after migration into the liver and lungs in sarcoidosis.


Assuntos
Macrófagos , Sarcoidose , Camundongos , Humanos , Animais , Diferenciação Celular , Macrófagos/metabolismo , Monócitos/metabolismo , Granuloma/metabolismo , Granuloma/patologia , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo
4.
J Exp Med ; 220(8)2023 08 07.
Artigo em Inglês | MEDLINE | ID: mdl-37097292

RESUMO

Control of Mycobacterium tuberculosis (Mtb) infection requires generation of T cells that migrate to granulomas, complex immune structures surrounding sites of bacterial replication. Here we compared the gene expression profiles of T cells in pulmonary granulomas, bronchoalveolar lavage, and blood of Mtb-infected rhesus macaques to identify granuloma-enriched T cell genes. TNFRSF8/CD30 was among the top genes upregulated in both CD4 and CD8 T cells from granulomas. In mice, CD30 expression on CD4 T cells is required for survival of Mtb infection, and there is no major role for CD30 in protection by other cell types. Transcriptomic comparison of WT and CD30-/- CD4 T cells from the lungs of Mtb-infected mixed bone marrow chimeric mice showed that CD30 directly promotes CD4 T cell differentiation and the expression of multiple effector molecules. These results demonstrate that the CD30 co-stimulatory axis is highly upregulated on granuloma T cells and is critical for protective T cell responses against Mtb infection.


Assuntos
Mycobacterium tuberculosis , Tuberculose , Animais , Camundongos , Linfócitos T CD4-Positivos , Diferenciação Celular , Granuloma/metabolismo , Macaca mulatta , Tuberculose/microbiologia , Antígeno Ki-1/imunologia
5.
Tuberculosis (Edinb) ; 140: 102345, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37116235

RESUMO

CD11b+Gr-1low cells that are increased in the lungs of a Mycobacterium (M) tuberculosis-infection mouse model have the characteristics of monocytic (M)-myeloid-derived suppressor cells (MDSCs) and harbor M.tuberculosis. Interestingly, a high number of M-MDSCs have also been observed in skin lesions of patients with lepromatous leprosy. We hypothesized that CD11b+Gr-1low cells might be involved in the pathogenesis of leprosy, as they are in tuberculosis. In the current study, we investigated the issue of whether CD11b+Gr-1low cells accumulate in Mycobacterium (M) leprae-induced granulomas of the footpad skin of nude mice. Our results show that CD11b+Gr-1low cells began to accumulate in the 7-month-old M.leprae-induced granulomas and were replaced by other leukocytes, including CD11b+Gr-1high over time during M.leprae infections. CD11b + Gr-1low cells expressed the surface markers of M-MDSC, Ly6Chigh and Ly6Glow. In addition, CD11b+Gr-1low cells have the nuclei of a mononuclear cell type and expressed higher levels of arginase 1 (Arg1) and inducible NO synthetase (iNOS). Furthermore, they showed a higher infection rate by M.leprae. Taken together, our results indicate that the inoculation with M.leprae induced an accumulation of CD11b + Gr-1low at a relatively early stage, 7-month-old M.leprae-induced granulomas, and that CD11b+Gr-1low have the characteristics of M-MDSC and may act as a reservoir for M.leprae.


Assuntos
Mycobacterium tuberculosis , Células Supressoras Mieloides , Tuberculose , Camundongos , Animais , Células Supressoras Mieloides/metabolismo , Células Supressoras Mieloides/patologia , Camundongos Nus , Mycobacterium tuberculosis/metabolismo , Tuberculose/metabolismo , Granuloma/induzido quimicamente , Granuloma/metabolismo , Antígeno CD11b/metabolismo
6.
Tuberculosis (Edinb) ; 139: 102318, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36889104

RESUMO

As a facultative intracellular pathogen, M. tuberculosis (Mtb) is highly adapted to evading antibacterial mechanisms in phagocytic cells. Both the macrophage and pathogen experience transcriptional and metabolic changes from the onset of phagocytosis. To account for this interaction in the assessment of intracellular drug susceptibility, we allowed a 3-day preadaptation phase post-macrophage infection prior to drug treatment. We found that intracellular Mtb in human monocyte-derived macrophages (MDM) presents dramatic alterations in susceptibility to isoniazid, sutezolid, rifampicin and rifapentine when compared to axenic culture. Infected MDM gradually accumulate lipid bodies, adopting a characteristic appearance reminiscent of foamy macrophages in granulomas. Furthermore, TB granulomas in vivo develop hypoxic cores with decreasing oxygen tension gradients across their radii. Accordingly, we evaluated the effects of hypoxia on preadapted intracellular Mtb in our MDM model. We observed that hypoxia induced greater lipid body formation and no additional shifts in drug tolerance, suggesting that the adaptation of intracellular Mtb to baseline host cell conditions under normoxia dominates changes to intracellular drug susceptibility. Using unbound plasma concentrations in patients as surrogates for free drug concentrations in lung interstitial fluid, we estimate that intramacrophage Mtb in granulomas are exposed to bacteriostatic concentrations of most study drugs.


Assuntos
Mycobacterium tuberculosis , Tuberculose , Humanos , Tuberculose/metabolismo , Macrófagos/microbiologia , Granuloma/metabolismo , Hipóxia/metabolismo
7.
Am J Physiol Cell Physiol ; 323(5): C1444-C1474, 2022 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-36189975

RESUMO

Mycobacterium tuberculosis (Mtb) is the pathogen that causes tuberculosis (TB), a leading infectious disease of humans worldwide. One of the main histopathological hallmarks of TB is the formation of granulomas comprised of elaborately organized aggregates of immune cells containing the pathogen. Dissemination of Mtb from infected cells in the granulomas due to host and mycobacterial factors induces multiple cell death modalities in infected cells. Based on molecular mechanism, morphological characteristics, and signal dependency, there are two main categories of cell death: programmed and nonprogrammed. Programmed cell death (PCD), such as apoptosis and autophagy, is associated with a protective response to Mtb by keeping the bacteria encased within dead macrophages that can be readily phagocytosed by arriving in uninfected or neighboring cells. In contrast, non-PCD necrotic cell death favors the pathogen, resulting in bacterial release into the extracellular environment. Multiple types of cell death in the PCD category, including pyroptosis, necroptosis, ferroptosis, ETosis, parthanatos, and PANoptosis, may be involved in Mtb infection. Since PCD pathways are essential for host immunity to Mtb, therapeutic compounds targeting cell death signaling pathways have been experimentally tested for TB treatment. This review summarizes different modalities of Mtb-mediated host cell deaths, the molecular mechanisms underpinning host cell death during Mtb infection, and its potential implications for host immunity. In addition, targeting host cell death pathways as potential therapeutic and preventive approaches against Mtb infection is also discussed.


Assuntos
Mycobacterium tuberculosis , Tuberculose , Humanos , Tuberculose/microbiologia , Tuberculose/prevenção & controle , Mycobacterium tuberculosis/metabolismo , Morte Celular , Macrófagos/metabolismo , Granuloma/metabolismo , Granuloma/microbiologia , Granuloma/patologia , Interações Hospedeiro-Patógeno
8.
Circ Res ; 131(8): 654-669, 2022 09 30.
Artigo em Inglês | MEDLINE | ID: mdl-36111531

RESUMO

BACKGROUND: Cardiac involvement is an important determinant of mortality among sarcoidosis patients. Although granulomatous inflammation is a hallmark finding in cardiac sarcoidosis, the precise immune cell populations that comprise the granuloma remain unresolved. Furthermore, it is unclear how the cellular and transcriptomic landscape of cardiac sarcoidosis differs from other inflammatory heart diseases. METHODS: We leveraged spatial transcriptomics (GeoMx digital spatial profiler) and single-nucleus RNA sequencing to elucidate the cellular and transcriptional landscape of cardiac sarcoidosis. Using GeoMX digital spatial profiler technology, we compared the transcriptomal profile of CD68+ rich immune cell infiltrates in human cardiac sarcoidosis, giant cell myocarditis, and lymphocytic myocarditis. We performed single-nucleus RNA sequencing of human cardiac sarcoidosis to identify immune cell types and examined their transcriptomic landscape and regulation. Using multichannel immunofluorescence staining, we validated immune cell populations identified by single-nucleus RNA sequencing, determined their spatial relationship, and devised an immunostaining approach to distinguish cardiac sarcoidosis from other inflammatory heart diseases. RESULTS: Despite overlapping histological features, spatial transcriptomics identified transcriptional signatures and associated pathways that robustly differentiated cardiac sarcoidosis from giant cell myocarditis and lymphocytic myocarditis. Single-nucleus RNA sequencing revealed the presence of diverse populations of myeloid cells in cardiac sarcoidosis with distinct molecular features. We identified GPNMB (transmembrane glycoprotein NMB) as a novel marker of multinucleated giant cells and predicted that the MITF (microphthalmia-associated transcription factor) family of transcription factors regulated this cell type. We also detected additional macrophage populations in cardiac sarcoidosis including HLA-DR (human leukocyte antigen-DR)+ macrophages, SYTL3 (synaptotagmin-like protein 3)+ macrophages and CD163+ resident macrophages. HLA-DR+ macrophages were found immediately adjacent to GPMMB+ giant cells, a distinct feature compared with other inflammatory cardiac diseases. SYTL3+ macrophages were located scattered throughout the granuloma and CD163+ macrophages, CD1c+ dendritic cells, nonclassical monocytes, and T cells were located at the periphery and outside of the granuloma. Finally, we demonstrate mTOR (mammalian target of rapamycin) pathway activation is associated with proliferation and is selectively found in HLA-DR+ and SYLT3+ macrophages. CONCLUSIONS: In this study, we identified diverse populations of immune cells with distinct molecular signatures that comprise the sarcoid granuloma. These findings provide new insights into the pathology of cardiac sarcoidosis and highlight opportunities to improve diagnostic testing.


Assuntos
Miocardite , Sarcoidose , Granuloma/metabolismo , Granuloma/patologia , Antígenos HLA , Humanos , Glicoproteínas de Membrana/metabolismo , Fator de Transcrição Associado à Microftalmia/metabolismo , Miocardite/genética , Sarcoidose/diagnóstico , Sarcoidose/genética , Sinaptotagminas , Serina-Treonina Quinases TOR/metabolismo
9.
Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi ; 38(10): 872-879, 2022 Oct.
Artigo em Chinês | MEDLINE | ID: mdl-36163617

RESUMO

Objectives To investigate the effect of the imbalance of Th17/Treg on egg granuloma formation of liver with Schistosomiasis japonicum. Methods The BALB/c mice were infected with Schistosoma japonicum cercariae to establish a model of Schistosomiasis japonica. The blood samples, liver tissues and spleen tissue were harvested at the 2nd, 4th, 6th, 8th week, respectively. HE staining and Masson staining were performed to assess the pathological characteristics of the liver. Flow cytometry (FCM) was conducted to evaluate the proportion of CD4+ T cell subsets including Th17 cells and Tregs in liver and spleen tissue. The quantitative real-time PCR (qRT-PCR) was carried out to investigate the mRNA level of cytokines including RORγt, FOXP3, IL-6, IL-17, IL-23 and IL-10 in liver tissues. Finally, ELISA was performed to assess the serum level of cytokines including IL-6, IL-17, IL-23 and TGF-ß. Schistosoma japonicium soluble egg antigen (SjSEA) were prepared to stimulate mouse spleen cells in vitro. qRT-PCR was carried out to investigate the mRNA level of cytokine including RORγt and FOXP3 and ELISA was performed to assess the expression level of cytokines including IL-6, IL-17, IL-23 and TGF-ß at different time points. Results HE and Masson staining demonstrated that inflammatory cell infiltration, schistosome egg granuloma formation and the collagen deposition increased in the liver tissue after the 4th week. The longer the infection, the more severe the liver pathology. In the liver and spleen tissues, the percentage of Th17 cells of infection group (2nd, 4th and 6th weeks) were significantly higher than the healthy group. The percentage of Tregs in the liver tissues of infection group (4th, 6th and 8th weeks) were significantly higher than the healthy group, and the percentage of Tregs in the spleen of infection group (2nd and 4th weeks) were significantly higher than the healthy group. Th17/Treg ratios in the liver of infection group were lower than the healthy group. Th17/Treg ratios in the spleen of infection group (2nd and 4th weeks) were lower than the healthy group, while it increased in the 6th week. At the same time, the levels of Th17 cells and Tregs related nuclear transcription factors and cytokines showed similar dynamic changes as the percentages of T cell subsets. SjSEA can induce the differentiation of Th17 and Tregs and the expression of related cytokines and transcription factors. Conclusion Th17 cells may play a major role in liver pathology, and the imbalance of Th17 cells/Tregs was closely related to the schistosome egg granuloma formation.


Assuntos
Schistosoma japonicum , Esquistossomose Japônica , Animais , Citocinas/metabolismo , Fatores de Transcrição Forkhead/genética , Fatores de Transcrição Forkhead/metabolismo , Granuloma/metabolismo , Granuloma/patologia , Interleucina-10/metabolismo , Interleucina-17/metabolismo , Interleucina-23/metabolismo , Interleucina-6/metabolismo , Fígado , Camundongos , Membro 3 do Grupo F da Subfamília 1 de Receptores Nucleares/genética , Membro 3 do Grupo F da Subfamília 1 de Receptores Nucleares/metabolismo , RNA Mensageiro/metabolismo , Schistosoma japonicum/metabolismo , Esquistossomose Japônica/metabolismo , Esquistossomose Japônica/patologia , Linfócitos T Reguladores , Células Th17 , Fator de Crescimento Transformador beta/metabolismo
10.
Front Immunol ; 13: 876321, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35663950

RESUMO

Mycobacterium tuberculosis (Mtb) bacilli are the causative agent of tuberculosis (TB), a major killer of mankind. Although it is widely accepted that local interactions between Mtb and the immune system in the tuberculous granuloma determine whether the outcome of infection is controlled or disseminated, these have been poorly studied due to methodological constraints. We have recently used a spatial transcriptomic technique, in situ sequencing (ISS), to define the spatial distribution of immune transcripts in TB mouse lungs. To further contribute to the understanding of the immune microenvironments of Mtb and their local diversity, we here present two complementary automated bacteria-guided analysis pipelines. These position 33 ISS-identified immune transcripts in relation to single bacteria and bacteria clusters. The analysis was applied on new ISS data from lung sections of Mtb-infected C57BL/6 and C3HeB/FeJ mice. In lungs from C57BL/6 mice early and late post infection, transcripts that define inflammatory macrophages were enriched at subcellular distances to bacteria, indicating the activation of infected macrophages. In contrast, expression patterns associated to antigen presentation were enriched in non-infected cells at 12 weeks post infection. T-cell transcripts were evenly distributed in the tissue. In Mtb-infected C3HeB/FeJ mice, transcripts characterizing activated macrophages localized in apposition to small bacteria clusters, but not in organized granulomas. Despite differences in the susceptibility to Mtb, the transcript patterns found around small bacteria clusters of C3HeB/FeJ and C57BL/6 mice were similar. Altogether, the presented tools allow us to characterize in depth the immune cell populations and their activation that interact with Mtb in the infected lung.


Assuntos
Mycobacterium tuberculosis , Tuberculose dos Linfonodos , Animais , Granuloma/metabolismo , Pulmão , Macrófagos , Camundongos , Camundongos Endogâmicos C57BL
11.
J Exp Med ; 219(8)2022 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-35731195

RESUMO

Dense-core plaques, whose centers contain highly polymerized and compacted aggregates of amyloid ß peptides, are one of the two defining histopathological features of Alzheimer's disease. Recent findings indicate that these plaques do not form spontaneously but are instead constructed by microglia, the tissue macrophages of the central nervous system. We discuss cellular, structural, functional, and gene expression criteria by which the microglial assembly of dense-core plaques in the Alzheimer's brain parallels the construction of granulomas by macrophages in other settings. We compare the genesis of these plaques to the macrophage assembly of mycobacterial granulomas, the defining histopathological features of tuberculosis. We suggest that if dense-core plaques are indeed granulomas, their simple disassembly may be contraindicated as an Alzheimer's therapy.


Assuntos
Doença de Alzheimer , Doença de Alzheimer/patologia , Peptídeos beta-Amiloides/metabolismo , Granuloma/metabolismo , Granuloma/patologia , Humanos , Microglia/metabolismo , Placa Amiloide/metabolismo
12.
Arch Immunol Ther Exp (Warsz) ; 70(1): 9, 2022 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-35226195

RESUMO

Infection with Mycobacterium tuberculosis (Mtb) results in the primary formation of a densely packed inflammatory foci that limits entry of therapeutic agents into pulmonary sites where organisms reside. No current therapeutic regimens exist that modulate host immune responses to permit increased drug penetration to regions of pathological damage during tuberculosis disease. Lactoferrin is a natural iron-binding protein previously demonstrated to modulate inflammation and granuloma cohesiveness, while maintaining control of pathogenic burden. Studies were designed to examine recombinant human lactoferrin (rHLF) to modulate histological progression of Mtb-induced pathology in a non-necrotic model using C57Bl/6 mice. The rHLF was oral administered at times corresponding to initiation of primary granulomatous response, or during granuloma maintenance. Treatment with rHLF demonstrated significant reduction in size of primary inflammatory foci following Mtb challenge, and permitted penetration of ofloxacin fluoroquinolone therapeutic to sites of pathological disruption where activated (foamy) macrophages reside. Increased drug penetration was accompanied by retention of endothelial cell integrity. Immunohistochemistry revealed altered patterns of M1-like and M2-like phenotypic cell localization post infectious challenge, with increased presence of M2-like markers found evenly distributed throughout regions of pulmonary inflammatory foci in rHLF-treated mice.


Assuntos
Lactoferrina , Mycobacterium tuberculosis , Animais , Fluoroquinolonas/efeitos adversos , Fluoroquinolonas/metabolismo , Granuloma/induzido quimicamente , Granuloma/tratamento farmacológico , Granuloma/metabolismo , Humanos , Inflamação , Lactoferrina/metabolismo , Camundongos , Camundongos Endogâmicos C57BL
13.
Int J Surg Pathol ; 30(1): 46-49, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33939556

RESUMO

Keratin granulomas in the peritoneum are a rare finding with multiple etiologies and can be especially challenging for both the pathologist and the surgeon when these lesions are grossly visible. We report a case of a unique frozen section diagnostic scenario of evaluation of keratin granulomas in the peritoneum of a 47-year-old woman in the setting of multiple potential culprits: endometrial endometrioid adenocarcinoma following fertility sparing treatment, and a concurrent dermoid cyst. We discuss the various etiologies of keratin granulomas in the peritoneum, mechanism of their formation, diagnostic significance, as well as implications of fertility sparing treatments. To the best of our knowledge, this is the only case of keratin granulomas in the peritoneum with multiple distinct potential pathologic culprits as well the only case following fertility sparing treatment.


Assuntos
Carcinoma Endometrioide/patologia , Cisto Dermoide/patologia , Neoplasias do Endométrio/patologia , Granuloma/patologia , Queratinas/metabolismo , Neoplasias Ovarianas/patologia , Doenças Peritoneais/patologia , Biomarcadores/metabolismo , Carcinoma Endometrioide/complicações , Carcinoma Endometrioide/diagnóstico , Carcinoma Endometrioide/metabolismo , Cisto Dermoide/complicações , Cisto Dermoide/diagnóstico , Cisto Dermoide/metabolismo , Diagnóstico Diferencial , Neoplasias do Endométrio/complicações , Neoplasias do Endométrio/diagnóstico , Neoplasias do Endométrio/metabolismo , Feminino , Secções Congeladas , Granuloma/diagnóstico , Granuloma/etiologia , Granuloma/metabolismo , Humanos , Pessoa de Meia-Idade , Neoplasias Ovarianas/complicações , Neoplasias Ovarianas/diagnóstico , Neoplasias Ovarianas/metabolismo , Doenças Peritoneais/diagnóstico , Doenças Peritoneais/etiologia , Doenças Peritoneais/metabolismo
14.
Front Immunol ; 12: 733853, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34745105

RESUMO

Globally, more than 10 million people developed active tuberculosis (TB), with 1.4 million deaths in 2020. In addition, the emergence of drug-resistant strains in many regions of the world threatens national TB control programs. This requires an understanding of host-pathogen interactions and finding novel treatments including host-directed therapies (HDTs) is of utter importance to tackle the TB epidemic. Mycobacterium tuberculosis (Mtb), the causative agent for TB, mainly infects the lungs causing inflammatory processes leading to immune activation and the development and formation of granulomas. During TB disease progression, the mononuclear inflammatory cell infiltrates which form the central structure of granulomas undergo cellular changes to form epithelioid cells, multinucleated giant cells and foamy macrophages. Granulomas further contain neutrophils, NK cells, dendritic cells and an outer layer composed of T and B lymphocytes and fibroblasts. This complex granulomatous host response can be modulated by Mtb to induce pathological changes damaging host lung tissues ultimately benefiting the persistence and survival of Mtb within host macrophages. The development of cavities is likely to enhance inter-host transmission and caseum could facilitate the dissemination of Mtb to other organs inducing disease progression. This review explores host targets and molecular pathways in the inflammatory granuloma host immune response that may be beneficial as target candidates for HDTs against TB.


Assuntos
Granuloma/metabolismo , Inflamação/imunologia , Pulmão/patologia , Macrófagos/imunologia , Mycobacterium tuberculosis/fisiologia , Neutrófilos/imunologia , Tuberculose/metabolismo , Animais , Granuloma/imunologia , Granuloma/terapia , Interações Hospedeiro-Patógeno , Humanos , Inflamação/terapia , Terapia de Alvo Molecular , Tuberculose/imunologia , Tuberculose/terapia
16.
Int J Mol Sci ; 22(20)2021 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-34681679

RESUMO

Sarcoidosis is a chronic disease with unknown etiology and pathophysiology, characterized by granuloma formation. Matrix Metalloproteinase-12 (MMP12) is an elastase implicated in active granulomatous sarcoidosis. Previously, we reported that oropharyngeal instillation of multiwall carbon nanotubes (MWCNT) into C57Bl/6 mice induced sarcoid-like granulomas and upregulation of MMP12. When Mmp12 knock-out (KO) mice were instilled with MWCNT, granuloma formation occurred 10 days post-instillation but subsequently resolved at 60 days. Thus, we concluded that MMP12 was essential to granuloma persistence. The aim of the current study was to identify potential mechanisms of granuloma resolution in Mmp12KO mice. Strikingly, an M2 macrophage phenotype was present in Mmp12KO but not in C57Bl/6 mice. Between 10 and 60 days, macrophage populations in MWCNT-instilled Mmp12KO mice demonstrated an M2c to M2a phenotypic shift, with elevations in levels of IL-13, an M2 subtype-regulating factor. Furthermore, the M2 inducer, Apolipoprotein E (ApoE), and Matrix Metalloproteinase-14 (MMP14), a promoter of collagen degradation, were upregulated in 60-day MWCNT-instilled Mmp12KO mice. In conclusion, alveolar macrophages express two M2 phenotypes in Mmp12KO mice: M2c at 10 days when granulomas form, and M2a at 60 days when granulomas are resolving. Findings suggest that granuloma resolution in 60-day Mmp12KO mice requires an M2a macrophage phenotype.


Assuntos
Granuloma/imunologia , Pneumopatias/imunologia , Macrófagos Alveolares/imunologia , Metaloproteinase 12 da Matriz/genética , Animais , Granuloma/metabolismo , Pneumopatias/metabolismo , Camundongos , Camundongos Knockout , Nanotubos de Carbono
17.
Front Immunol ; 12: 719009, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34456926

RESUMO

Background: Macrophages are pivotal cells in sarcoidosis. Monocytes-derived (MD) macrophages have recently been demonstrated to play a major role especially in pulmonary sarcoidosis. From inflammatory tissues to granulomas, they may be exposed to low oxygen tension environments. As hypoxia impact on sarcoidosis immune cells has never been addressed, we designed the present study to investigate MD-macrophages from sarcoidosis patients in this context. We hypothesized that hypoxia may induce functional changes on MD-macrophages which could have a potential impact on the course of sarcoidosis. Methods: We studied MD-macrophages, from high active sarcoidosis (AS) (n=26), low active or inactive sarcoidosis (IS) (n=24) and healthy controls (n=34) exposed 24 hours to normoxia (21% O2) or hypoxia (1.5% O2). Different macrophage functions were explored: hypoxia-inducible factor-1α (HIF-1α) and nuclear factor-kappa B (NF-κB) activation, cytokines secretion, phagocytosis, CD80/CD86/HLA-DR expression, profibrotic response. Results: We observed that hypoxia, with a significantly more pronounced effect in AS compared with controls and IS, increased the HIF-1α trans-activity, promoted a proinflammatory response (TNFα, IL1ß) without activating NF-κB pathway and a profibrotic response (TGFß1, PDGF-BB) with PAI-1 secretion associated with human lung fibroblast migration inhibition. These results were confirmed by immunodetection of HIF-1α and PAI-1 in granulomas observed in pulmonary biopsies from patients with sarcoidosis. Hypoxia also decreased the expression of CD80/CD86 and HLA-DR on MD-macrophages in the three groups while it did not impair phagocytosis and the expression of CD36 expression on cells in AS and IS at variance with controls. Conclusions: Hypoxia had a significant impact on MD-macrophages from sarcoidosis patients, with the strongest effect seen in patients with high active disease. Therefore, hypoxia could play a significant role in sarcoidosis pathogenesis by increasing the macrophage proinflammatory response, maintaining phagocytosis and reducing antigen presentation, leading to a deficient T cell response. In addition, hypoxia could favor fibrosis by promoting profibrotic cytokines response and by sequestering fibroblasts in the vicinity of granulomas.


Assuntos
Suscetibilidade a Doenças , Hipóxia/metabolismo , Macrófagos/imunologia , Macrófagos/metabolismo , Sarcoidose/etiologia , Sarcoidose/metabolismo , Biomarcadores , Estudos de Casos e Controles , Células Cultivadas , Citocinas/metabolismo , Fibroblastos/metabolismo , Fibrose , Granuloma/genética , Granuloma/metabolismo , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Imuno-Histoquímica , Mediadores da Inflamação/metabolismo , NF-kappa B/metabolismo , Fagocitose , Fenótipo , Sarcoidose/patologia , Sarcoidose Pulmonar/etiologia , Sarcoidose Pulmonar/metabolismo , Sarcoidose Pulmonar/patologia
18.
Int J Mol Sci ; 22(8)2021 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-33923774

RESUMO

Cardiac sarcoidosis (CS) is a poorly understood disease and is characterized by the focal accumulation of immune cells, thus leading to the formation of granulomata (GL). To identify the developmental principles of fatal GL, fluorescence microscopy and Western blot analysis of CS and control patients is presented here. CS is visualized macroscopically by positron emission tomography (PET)/ computed tomography (CT). A battery of antibodies is used to determine structural, cell cycle and inflammatory markers. GL consist of CD68+, CD163+ and CD206+ macrophages surrounded by T-cells within fibrotic areas. Cell cycle markers such as phospho-histone H3, phospho-Aurora and Ki67 were moderately present; however, the phosphorylated ERM (ezrin, radixin and moesin) and Erk1/2 proteins, strong expression of the myosin motor protein and the macrophage transcription factor PU.1 indicate highly active GL. Mild apoptosis is consistent with PI3 kinase and Akt activation. Massive amounts of the IL-1R antagonist reflect a mild activation of stress and inflammatory pathways in GL. High levels of oncostatin M and the Reg3A and Reg3γ chemokines are in accordance with macrophage accumulation in areas of remodeling cardiomyocytes. We conclude that the formation of GL occurs mainly through chemoattraction and less by proliferation of macrophages. Furthermore, activation of the oncostatin/Reg3 axis might help at first to wall-off substances but might initiate the chronic development of heart failure.


Assuntos
Cardiomiopatias/metabolismo , Granuloma/metabolismo , Miocárdio/metabolismo , Oncostatina M/metabolismo , Proteínas Associadas a Pancreatite/metabolismo , Sarcoidose/metabolismo , Adulto , Apoptose , Aurora Quinases/metabolismo , Cardiomiopatias/patologia , Proliferação de Células , Proteínas do Citoesqueleto/metabolismo , Feminino , Granuloma/patologia , Histonas/metabolismo , Humanos , Antígeno Ki-67/metabolismo , Macrófagos/metabolismo , Macrófagos/fisiologia , Masculino , Proteínas de Membrana/metabolismo , Proteínas dos Microfilamentos/metabolismo , Pessoa de Meia-Idade , Sarcoidose/patologia
19.
Am J Physiol Lung Cell Mol Physiol ; 320(6): L1137-L1146, 2021 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-33851886

RESUMO

Sarcoidosis is a systemic granulomatous disease predominantly affecting the lungs. The mechanisms promoting disease pathogenesis and progression are unknown, although interleukin-15 (IL-15) has been associated with the immune-mediated inflammation of sarcoidosis. Because the identification of a mechanistically based, clinically relevant biomarker for sarcoidosis remains elusive, we hypothesized this role for IL-15. Pulmonary sarcoidosis granuloma formation was modeled using trehalose 6,6'-dimicolate (TDM), which was administered into wild-type and three lineages of mice: those overexpressing IL-15, deficient in IL-15, and deficient in IL-15 receptor α. The number of granulomas per lung was counted and normalized to the wild type. IL-15 concentrations were measured in the bronchoalveolar lavage (BAL) from healthy controls and subjects with sarcoidosis in our cohort, where associations between IL-15 levels and clinical manifestations were sought. Findings were validated in another independent sarcoidosis cohort. TDM administration resulted in similar granuloma numbers across all lineages of mice. IL-15 concentrations were elevated in the BAL of both human cohorts, irrespective of disease phenotypes. In exploratory analysis, an association with obesity was observed, and various other soluble mediators were identified in the BAL of both cohorts. Although IL-15 is enriched in the sarcoidosis lung, it was independent of disease pathogenesis or clinical manifestations in our mouse model and human cohorts of sarcoidosis. An association with obesity perhaps reflects the ongoing inflammatory processes of these comorbid conditions. Our findings showed that IL-15 is redundant for disease pathogenesis and clinical progression of sarcoidosis.


Assuntos
Granuloma/metabolismo , Interleucina-15/metabolismo , Fenótipo , Sarcoidose Pulmonar/patologia , Sarcoidose/metabolismo , Animais , Líquido da Lavagem Broncoalveolar/citologia , Modelos Animais de Doenças , Granuloma/patologia , Inflamação/patologia , Interleucina-15/genética , Pulmão/metabolismo , Pulmão/patologia , Sarcoidose/patologia , Sarcoidose Pulmonar/complicações
20.
Nat Commun ; 12(1): 2027, 2021 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-33795674

RESUMO

The immune response to mycobacteria is characterized by granuloma formation, which features multinucleated giant cells as a unique macrophage type. We previously found that multinucleated giant cells result from Toll-like receptor-induced DNA damage and cell autonomous cell cycle modifications. However, the giant cell progenitor identity remained unclear. Here, we show that the giant cell-forming potential is a particular trait of monocyte progenitors. Common monocyte progenitors potently produce cytokines in response to mycobacteria and their immune-active molecules. In addition, common monocyte progenitors accumulate cholesterol and lipids, which are prerequisites for giant cell transformation. Inducible monocyte progenitors are so far undescribed circulating common monocyte progenitor descendants with high giant cell-forming potential. Monocyte progenitors are induced in mycobacterial infections and localize to granulomas. Accordingly, they exhibit important immunological functions in mycobacterial infections. Moreover, their signature trait of high cholesterol metabolism may be piggy-backed by mycobacteria to create a permissive niche.


Assuntos
Citocinas/imunologia , Células Gigantes/imunologia , Macrófagos/imunologia , Monócitos/imunologia , Células-Tronco/imunologia , Animais , Células Cultivadas , Citocinas/metabolismo , Feminino , Células Gigantes/metabolismo , Células Gigantes/microbiologia , Granuloma/imunologia , Granuloma/metabolismo , Humanos , Macrófagos/metabolismo , Macrófagos/microbiologia , Camundongos da Linhagem 129 , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Monócitos/metabolismo , Monócitos/microbiologia , Mycobacterium/imunologia , Mycobacterium/fisiologia , Células-Tronco/metabolismo , Células-Tronco/microbiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA